Hyaluronidase increases the biodistribution of acid alpha-1,4 glucosidase in the muscle of Pompe disease mice: an approach to enhance the efficacy of enzyme replacement therapy.
نویسندگان
چکیده
Pompe disease (glycogen storage disease type II) is a glycogen storage disease caused by a deficiency of the lysosomal enzyme, acid maltase/acid alpha-1,4 glucosidase (GAA). Deficiency of the enzyme leads primarily to intra-lysosomal glycogen accumulation, primarily in cardiac and skeletal muscles, due to the inability of converting glycogen into glucose. Enzyme replacement therapy (ERT) has been applied to replace the deficient enzyme and to restore the lost function. However, enhancing the enzyme activity to the muscle following ERT is relatively insufficient. In order to enhance GAA activity into the muscle in Pompe disease, efficacy of hyaluronidase (hyase) was examined in the heart, quadriceps, diaphragm, kidney, and brain of mouse model of Pompe disease. Administration of hyase 3000 U/mouse (intravenous) i.v. or i.p. (intraperitoneal) and 10 min later recombinant human GAA (rhGAA) 20 mg/kg i.v. showed more GAA activity in hyase i.p. injected mice compared to those mice injected with hyase via i.v. Injection of low dose of hyase (3000 U/mouse) or high dose of hyase (10,000 U/mouse) i.p. and 20 min or 60 min later 20 mg/kg rhGAA i.v. increased GAA activity into the heart, diaphragm, kidney, and quadriceps compared to hyase untreated mice. These studies suggest that hyase enhances penetration of enzyme into the tissues including muscle during ERT and therefore hyase pretreatment may be important in treating Pompe disease.
منابع مشابه
A New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy
Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...
متن کاملHeadache: A Presentation of Pompe Disease; A Case Report
Pompe disease, also termed glycogen storage disease type II or acid maltase deficiency, caused by deficient activity of acid alpha-glucosidase (GAA), the glycogen degrading lysosomal enzyme. As a result, massive lysosomal glycogen deposits in the numerous organs including the muscles. In Pompe disease weakness of truncal muscles is a prominent presentation which results in respiratory failure a...
متن کاملCorrection of multiple striated muscles in murine Pompe disease through adeno-associated virus-mediated gene therapy.
Glycogen storage disease type II (Pompe disease; MIM 232300) stems from the deficiency of acid alpha-glucosidase (GAA; acid maltase; EC 3.2.1.20), which primarily involves cardiac and skeletal muscles. An adeno-associated virus 2/8 (AAV2/8) vector containing the muscle creatine kinase (MCK) (CK1) reduced glycogen content by approximately 50% in the heart and quadriceps in GAA-knockout (GAA-KO) ...
متن کاملDivergent clinical outcomes of alpha-glucosidase enzyme replacement therapy in two siblings with infantile-onset Pompe disease treated in the symptomatic or pre-symptomatic state
Pompe disease is an autosomal recessive, lysosomal glycogen storage disease caused by acid α-glucosidase deficiency. Infantile-onset Pompe disease (IOPD) is the most severe form and is characterized by cardiomyopathy, respiratory distress, hepatomegaly, and skeletal muscle weakness. Untreated, IOPD generally results in death within the first year of life. Enzyme replacement therapy (ERT) with r...
متن کاملConjugation of mannose 6-phosphate-containing oligosaccharides to acid alpha-glucosidase improves the clearance of glycogen in pompe mice.
Clinical studies of enzyme replacement therapy for Pompe disease have indicated that relatively high doses of recombinant human acid alpha-glucosidase (rhGAA) may be required to reduce the abnormal glycogen storage in cardiac and skeletal muscles. This may be because of inefficient cation-independent mannose 6-phosphate receptor (CI-MPR)-mediated endocytosis of the enzyme by the affected target...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 350 3 شماره
صفحات -
تاریخ انتشار 2006